Polycythemia Vera

Polycythemia vera is an uncommon neoplasm or blood cancer where the bone marrow produces too many erythrocytes, megakaryocytes, and granulocytes, resulting in panmyelosis. The cancer is caused by a mutation in the JAK2 gene. Janus Kinase 2 (JAK2) is a non-receptor tyrosine kinase that plays a role in signaling in the type II cytokine receptor family. Members of that family include interferon receptors, GM-CSF receptor family, gp130 receptors, and the single chain receptors (EPO-R, etc). The function of those receptors are not important. The most important receptor for this article is the EPO-R receptor. The erythropoietin receptor (EPO-R) is a protein encoded by the EPOR gene that pre-exists in a dimerized state. When the ligand erythropoietin binds to the EPO-R receptor it induces a conformational change that results in the autophosphorylation of the JAK2 kinases. This establishes the function of EPO-R which is to promote proliferation and the rescue of erythroid progenitors from apoptosis. EPO-R induces JAK2-STAT5 signaling and with help from the transcription factor GATA-1 induces the transcription of the protein BCL-XL which is anti-apoptotic and promotes red cell survival.

In polycythemia vera (PV) there is a JAK2V617F mutation that causes independent continuous expression of the JAK2 kinase without erythropoietin (EPO) that acts on signaling pathways involving the EPO-R or hyperexpression in the presence of EPO. This causes increased gene expression for erythroid precursor cell proliferation and differentiation. It up regulates BCL-XL, which as mentioned above is an anti-apoptotic. This causes an abnormal accumulation of red cells in the peripheral blood. Its important to note that the accumulation of the red cells is due to lack of apoptosis, NOT because they are dividing quicker. Also there is a difference between primary PV and secondary PV. In primary PV there is a decreased expression of EPO, this is a compensation method for the body. As there is autophosphorylation of the EPO-Receptor, the body tries to reverse the process by down regulating the expression of erythropoietin (EPO). In secondary PV, there is normal to increased expression of EPO.

P-vera

Diagnosis

Diagnosis of PV according to the World Heath Organization (WHO) has to satisfy both major and minor criteria. The major criteria that has to be observed is a hemoglobin higher than 18.5 g/dL in men, and greater than 16.5 g/dL in women. There also has to be the presence of the JAK2 mutation. Minor criteria include presence of bone marrow hypercellularity demonstrating panmyelosis, serum EPO levels decreased, and a demonstration of endogenous erythroid colony growth in vitro. Meaning that there is presence of red cell growth in the laboratory using EPO from the patient, which assumes there is an issue with the downstream signaling of EPO, not EPO itself.

Laboratory results illustrate an increased hemoglobin, hematocrit, and MCV. There is an increased red cell count, platelet count, and white blood cell count. The leukocyte alkaline phosphatase is also increased. Its important to know that although the platelet count is increased, there is also an altered function of the platelets. The erythrocyte sedimentation rate will be decreased due to the decrease in the zeta potential. The zeta potential is the electrokinetic potential between the red cells that stops them from stacking or from sticking to one another. One classic characteristic of PV is erythromelalgia. This is a burning sensation in the pain and feet, with a reddish or bluish discoloration. This is caused by an increased platelet agglutination, from being dysfunctional that results in microvascular blood clots.

Treatment

If untreated, PV can be fatal. Although the disease can’t be cured, it can be controlled and the life expectancy has risen with modern advances in medicine. Phlebotomy is recommended to reduce the hemoglobin and hematocrit levels, but can induce iron deficiency anemia if not monitored. Low dose aspirin is prescribed to reduce the risk of thrombotic events. The accumulation of the red cells increases the risk for the patient to develop thrombotic events because the blood is “thick”. Chemotherapy can be used, but is not normally indicated, unless therapeutic phlebotomy is unable to maintain a normal hemoglobin or hematocrit or when there is significant thrombocytosis. It is dangerous because of the risk for transformation to acute myeloid leukemia (AML).

To recap; its important to know the mutation in the JAK2 kinase that induces polycythemia vera. Although this mutation is demonstrated in 90% of cases, its possible that its absent. Panmyelosis and elevation of RBC indices is a diagnostic finding. Its important to know the major and minor criteria for the diagnosis of PV. Treatment is therapeutic phlebotomy and chemotherapy in rare cases, only when prior treatment has failed.

Advertisements

Thyroid 101

The thyroid gland is one branch of the endocrine system that is located in the neck that has two lobes connected by an isthmus. The hypothalamus secretes Thyrotropin-releasing hormone (TRH) which stimulates the anterior pituitary to secrete Thyroid-stimulating hormone (TSH). TSH acts on the thyroid gland to secrete the hormones triiodothyronine (T3) and thyroxine (T4). Within the circulation T4 is converted to its active metabolite T3. There are two different types of thyroid cells. Follicular cells produce the thyroid hormones T3 and T4. The parafollicular cells produce calcitonin. Calcitonin causes calcium reabsorption and maintains calcium homeostasis.

Synthesis of Thyroid Hormones is from iodine and tyrosine. Triiodothyronine (T3) has three atoms of iodine per molecule and thyroxine (T4) has four atoms of iodine per molecule. The hormones are created from thyroglobulin which is a protein within the follicular space that is originally created within the rough endoplasmic reticulum (RER). Thyroglobulin contains 123 units of tyrosine with reacts with iodine within the follicular space. A sodium-iodide symporter pumps iodide actively into the cell where it enters the follicular lumen from the cytoplasm by the transporter pendrin. In the colloid, iodide is oxidized to iodine by the enzyme called thyroid peroxidase. Iodine is very reactive and iodinates the thyroglobulin at tyrosyl residues in its protein chain. This forms the precursors of the thyroid hormones monoiodotyrosine (MIT), and diiodotyrosine (DIT). The adjacent tyrosyl residues are then paired together and subsequently the entire complex re-enters the follicular cell by endocytosis. Proteolysis liberates triiodothyronine and thyroxine and they enter the blood stream. Of the hormones secreted from the gland, 80-90% is T4, and only about 10-20% is T3. The production of T3, and T4 is primarily regulated by thyroid-stimulating hormone (TSH) which is released by the anterior pituitary gland. The thyroid hormones provide negative feedback to the thyrotropes TSH and TRH; when the thyroid hormones are high, TSH production is suppressed, and when levels are low, TSH secretion is increased.

After secretion, there is a very small percentage of the thyroid hormones that travel freely in the blood and that are metabolically active. Most are bound to thyroxine-binding globulin (TBG), transthyretin, and albumin. They act upon their respective tissues by crossing the cell membrane and binding to intracellular nuclear thyroid hormone receptors, which bind with hormone response elements and transcription factors to modulate DNA transcription. This modulation is what drives protein synthesis within the target tissue to actively project its physiological function within on the tissue and body.

Calcitonin is secreted by the parafollicular cells which helps maintain calcium homeostasis. Calcitonin is produced in response to high blood calcium. This causes inhibition of the release of calcium from the bone by decreasing the activity of osteoclasts. Osteoclasts are cells which break down bone. Bone is constantly reabsorbed by osteoclasts and created by osteoblasts, so calcitonin is effectively stimulates movement of calcium into bone. The effects of calcitonin are opposite of those of the parathyroid hormone (PTH) produced by the parathyroid gland.

Function

The primary function of the thyroid gland is the production of the thyroid hormones that have downstream metabolic, cardiovascular, and developmental effects. The basal metabolic rate is increased which effects all tissues. Gut adsorption and motility is increased. The generation, uptake by cells and breakdown of glucose is increased. The thyroid hormones also increase the breakdown of fats which increases free fatty acids, but contrary to believe, thyroid hormones decrease cholesterol levels.

There is an increase in cardiac output, as well as rate of breathing, intake and consumption of oxygen and increase in oxidative respiration within the mitochondria. These factors combine increase vascular pressure and elevate the bodies temperature.

The thyroid hormones are important for normal development. The cells of the developing brain are a major target for the thyroid hormones. They play a crucial role in brain maturation during fetal development. The thyroid hormones also play a role in maintaining normal sexual function, circadian sleep rhythm, and thought patterns.

The overarching effect is an augmented flight-or-fight response. It increases the release of the catecholamines which drives sympathetic innervation.

Clinical Significance

Hyperthyroidism is an excessive production of the thyroid hormones, most commonly a result of Graves Disease. Graves disease, also known as toxic diffuse goiter is an autoimmune disease that results in an enlarged thyroid. The exact cause is unknown, however it appears to be a combination of both genetic and environmental factors. An antibody, called the thyroid-stimulating immunoglobulin (TSI) which mimics the effect of TSH. This causes an increased T3 and T4, and an increased radio iodine uptake. Laboratory tests will show a decreased level of TSH, because there is negative feedback on the pituitary, but because of the antibody, production of the thyroid hormones continuous. One of the classic findings of Graves disease is exophthalmos, which is bulging of the eyes. This is often accompanied by irritability, muscle weakness, sleeping problems, increased heart rate and blood pressure and unintentional weight loss. Patients may complain of being “hot” all the time, illustrating a poor tolerance of heat.

Hypothyroidism is an underactive thyroid gland which results in decreased secretion of thyroid hormones. One of the most common causes is an autoimmune disorder called Hashimotos thyroiditis or chronic lymphocytic thyroiditis. The disease is characterized by gradual destruction of the thyroid gland. There are various antibodies that have been identified targeting against thyroid peroxidase, thyroglobulin, and TSH receptors. There is activation of cytotoxic T-cells in response to a cell mediated immune response affected by helper T-cells that drives thymocyte destruction. Cytokine release recruits macrophages within the gland to further drive destruction. Early on in the disease there may be no clinical evidence or symptoms of Hashimotos, but as the disease progresses, so does the clinical presentation. The most common symptoms are fatigue, weight gain, feeling cold, joint and muscle pain, depression, and bradycardia. This disease is about seven times more common in women than in men. Diagnosis is from TSH and T4 levels, imaging, along with other clinical symptoms. The thyroid gland may become firm, large and lobulated. There is lymphocytic infiltration and fibrosis that is seen.

These are not all the causes of hyper/hypothyroidism, but these are the most common, and in most cases, the most severe.

 

 

 

Pheochromocytoma Workup

A pheochromocytoma is a catecholamine-secreting tumor that arises from the chromatin cells of the adrenal medulla. Extraadrenal pheochromocytoma arise from the sympathetic ganglia and are referred to as catecholamine-secreting paragangliomas. These neoplasms are very rare, occurring in less than 0.2% of the patients. Most catecholamine-secreting tumors are sporadic and occur in the fourth to fifth decade of life, effecting both men and women equally. However, about 40% of the patients that present with a pheochromocytoma there is a familial inheritance. These familial tumors arise earlier in life and typically associated with several familial disorders. Such disorders are Von Hippel-Lindau (VHL) syndrome, multiple endocrine neoplasia type 2 (MEN2), and neurofibromatosis (NF1).

Clinical Presentation

Symptoms and signs only occur in about 50% of patients and paroxysmal in nature. There is a classic triad of symptoms that is observed which consists of episodic headache, sweating, and tachycardia with either paroxysmal hypertension or primary hypertension. Paroxysmal hypertension is the most common sign of pheochromocytoma. The headache associated with pheochromocytoma can vary from mild to severe and occurs in 90% of patients. Generalized sweating occurs accompanied by forceful palpitations, tremors, dyspnea, fatigue, and often anxiety and panic attack-type symptoms. There is increased secretion of catecholamines; epinephrine, norepinephrine, and dopamine which cause abnormalities in carbohydrate metabolism which leads to insulin resistance, and an impaired fasting glucose which mimics type 2 diabetes mellitus. In rare cases there is episodic hypotension and rapid cyclic fluctuations of hypertension and hypotension.

Initial Evaluation

The diagnosis of pheochromocytoma is made upon biochemical testing for catecholamine hypersecretion, followed by imaging studies to identify an adrenal tumor. There are many indications for testing that a physician may take into consideration before subjecting patients to many tests and appointments. Some of the indications for testing include the classic triad of symptoms (headache, sweating, and tachycardia), hyperadrenergic spells (palpitations, diaphoresis, tremor, pallor), onset of paroxysmal hypertension or primary hypertension at an early age, or any familial syndromes or history of pheochromocytoma.

Biochemical Testing

The range of biochemical testing that is performed is based upon the index of suspicion that the patient in fact has a pheochromocytoma. Low index of suspicion includes a 24-hour urinary fractionated catecholamines and metanephrines. If there is a high index of suspicion, it is recommended to use a plasma fractionated metanephrines. These tests are performed by high-performance liquid chromatography (HPLC) with tandem mass spectroscopy or electrochemical detection. The more recent techniques have overcome the traditional problems that are associated with drug interference and contrast agents.

Catecholamines

Catecholamines are an organic compound that are derived from the amino acid tyrosine. Tyrosine can either be derived from diet or synthesized from phenylalanine. Epinephrine, norepinephrine, and dopamine are the primary catecholamines that are secreted from the adrenal medulla during the sympathetic flight-or-fight response.

Norepinephrine is a neuromodulator and a hormone that circulates in the blood. Its primary function is to mobilize the brain and the body for action as part of the peripheral sympathetic system. In the flight-or-fight response norepinephrine causes arousal and alertness. It enhances the formation and retrieval of memory, and focuses attention. As a hormone it increases cardiac output by increasing the heart rate and blood pressure. It triggers glycolysis and increases vascular blood flow to the skeletal muscles.

Dopamine functions as a neurotransmitter that is released by neurons to send signals to other functioning nerve synapses. Dopamine plays a critical role in reward-motivated behavior. The anticipation of most types of rewards increase the levels of dopamine in the brain. Many addictive drugs mimic this pathway while simultaneously blocking the reuptake of it. Dopamine is also functional in the motor control pathway as a neuromodulator which controls the release of many other hormones. In circulation outside of the brain, dopamine functions as a chemical messenger. It inhibits norepinephrine release and acts as a vasodilator. It increases renal excretion of sodium. It acts to reduce insulin secretion and gastrointestinal motility.

Epinephrine, also known as adrenaline or adrenalin functions as a neurotransmitter, hormone, and as a medication. It plays an important role in increasing cardiac output, pupil dilation, and increasing insulin release to stimulate glycolysis. It acts on the alpha and beta receptors to ultimate activate the flight-or-fight response. Epinephrine is also used medically to treat a number of conditions including anaphylaxis, cardiac arrest, and bleeding.

Blood System Portfolio: Rhesus System

The Rhesus blood system is arguably the second most important blood system behind the ABO system. There are 50 defined blood group antigens, among which the five antigens; D, C, E, c, e are the most significant. Individuals who are Rh positive possess the D antigen and those who are Rh negative lack the D antigen. Antibodies to Rh antigens play a major role in hemolytic transfusion reactions and cause significant risk for hemolytic disease of the fetus and newborn (HDFN).

Biochemistry

The gene locus for the Rh system antigens is located on chromosome 1. There are two genes that are closely related. RHD is a 417 amino acid sequence membrane protein that encodes for the D antigen. RHCE codes for a different membrane protein that carries the C/c and E/e antigens. A third gene, RHAG, located on chromosome 6 is associated with the expression of RHD and RHCE membrane proteins. RHAG NEEDS to be expressed for RHD and RHCE to be expressed. The Rh antigens are membrane bound non-glycosylated proteins (meaning that there is no carbohydrate attached) involved with membrane transport of cations. An individual who is C instead of c has a difference found in amino acid position 103, where C has a serine and c has a proline. An individual who has E antigen possesses a proline at amino acid position 226, and an individual who has the e antigen has an alanine at amino acid position 226.

History

The Rhesus blood system was discovered in 1937 by Karl Landsteiner and Alexander S. Wiener who named it the “Rhesus factor” because they believed it resembled an antigen found on rhesus monkey red cells. It was soon after that it was discovered that the human factor (Rh) is not at all similar to antigens found on the red cells of the rhesus monkey, although it stands today as a misnomer. Today in the United States 85% of the population are Rh positive and 15% are Rh negative. 70% of the population has the C antigen, 30% have the E antigen, 80% have the c antigen, and 98% have the e antigen. The Rh system currently has two sets of nomenclatures, one which was discovered by Ronald Fisher and R.R. Race, and the other by Alexander Wiener. Both systems are based on alternate theories which have both been since proved partially correct. The Fisher-Race system operates on the theory that separate genes control the product of each corresponding antigen. The Wiener system is based on the theory that there was a single gene on a single locus on each chromosome that gave rise to multiple antigens. Testing today shows that there are two genes that control the Rh system. The first one; RHD gene which produces a single antigen (D) and immune anti-D, and the RHCE gene which synthesizes the C, c, E, e antigens and corresponding antibodies.

Rh Testing

Some individuals can have a weak expression of the D antigen. They are Rh positive, but it is difficult to detect the presence of the antigen on the red cells. They require more sensitive methods of detection using anti-human globulin which is a poly specific CD3-IgG antibody reagent. It enhances the antigen-antibody complex formed so that agglutination is detected. Its important to detect weak D is cross-matching the donor and recipient blood samples especially when the recipient has anti-D in the serum. There are a few mechanisms for weak D expression. There can be a genetic weak D where a genetic variation of the D antigen is inherited. A partial D where the structure of the D antigen is made up of antigenic subparts where different D epitopes are missing or genetically altered.

Rh null is when there is absence of the RHAG gene. If individuals do not have a functioning RHAG gene there is no expression of genes RHD and RHCE and the corresponding antigens do not get expressed on the red cells. Red cell abnormalities have been observed with the phenotype including hemolytic anemia, decreased cell survival, stomatocytosis, spherocytosis, and altered activity of other blood group systems, most notably the MNS blood system.

Rh antibodies are IgG and are not detected at room temperature and need incubation at 37 degrees C. and the addition of a protein enhancement such as albumin or LISS to make detection more reliable. Anti-D is the most important antibody that can be formed. It takes just one exposure as the D antigen is extremely immunogenic. This typically happens through transfusion of antigen positive blood to an antigen negative recipient or through pregnancy and birth where there is maternal and fetal blood exchange where the mother gets sensitized. This is the basis of HDFN.

Important reminders regarding transfusion practice for the Rh system; Rh negative individuals should never receive Rh positive donor units. Rh positive individuals can receive Rh positive, but can in emergencies receive Rh negative. If there are Rh antibodies present, transfuse blood units that lack the Rh antigens to those antibodies. Sometimes its appropriate to phenotype and genotype a recipient or a donor. To do that the five different specific antisera is used to test for the five antigens that can be expressed. The purpose of Rh phenotypic and genotyping is to identify unexpected Rh antibodies, estimate the risk of HDFN in women, and in some cases can be used to exclude the male in paternity testing.