Donath-Landsteiner Antibodies

The history of the DL antibody goes back to the 1900’s. It was one of the first recognized forms of immune mediated hemolysis and responsible for inducing Paroxysmal Cold Hemoglobinuria (PCH). PCH is a transient condition, meaning that it comes on when immunoglobulins (Antibodies) are formed in response to a viral, bacterial, or spirochete infection. Its history will suggest that there is an association between PCH and syphilis. In over 90% of the cases of PCH in early history, the patient was co-diagnosed with syphilis. Throughout the 1900’s the condition began to evolve and is now seen most commonly in children following some sort of infection. Although it should be noted that PCH is not limited to those of adolescent age. So what really is the Donath-Landsteiner antibody and how does it contribute to PCH?

Clinical Presentation

Paroxysmal Cold Hemoglobinuria (PCH) is an autoimmune hemolytic anemia (AIHA). Autoimmune meaning that they are antibodies that have cross-reacted to attack the individuals own cells. Hemoglobinuria means that there will be hemoglobin present in the blood, which suggests intravascular hemolysis. PCH is one of the more common intravascular hemolytic anemias. Typical patients present with fever, chills, abdominal and back pain, and pronounced hemoglobinuria. PCH typically presents in children following and upper respiratory infection or immunization. These patients often have a rapidly progressing anemia with hemoglobins that can fall as low as 2.5 g/dL. Peripheral blood smears show significant red blood cell agglutination and anisocytosis and poikilocytosis. Anisocytosis indicating variance in size of the red blood cells and poikilocytosis indicating variance in structure to the red blood cells. Schistocytes, spherocytes, and polychromasia are common findings. The spherocytes and polychromasia are indicative of the bone marrow trying to replenish the red cell population as best it can so it forces out immature erythrocytes into the peripheral blood. Its an effort to sustain the hemoglobin as best it can. One distinguishing peripheral blood smear finding in patients with PCH is erythrophagocytosis. Lets break this word down. Erythro- short for erythrocyte meaning red blood cells. Phagocytosis is mediated by neutrophils and monocytes as a way to kill foreign pathogens. In the case of erythrophagocytosis in PCH, neutrophils are characteristically seen engulfing red blood cells, which is diagnostic for AIHA.

The Donath-Landsteiner Antibody

The DL antibody, although being recognized as an cold autoantibody, is an IgG antibody that has developed P antigen specificity and it is a biphasic hemolysin. What that means is that when someone has the DL antibody and is exposed to cold temperatures, it will bind to the individuals red blood cells through the P antigen, but does not cause hemolysis until the coated red blood cells are heated to 37 degrees Celsius as they (RBC:antibody complex) travel from the peripheral fingertips and toes to the core of the human body.   At cold temperatures, the IgG molecule is able to recruit complement (C3), and at the higher temperatures, activates the membrane attack complex (C5-C9) and lyses the red blood cells. One very interesting piece of information regarding the difference between Cold Agglutinin Syndrome (CAS), another autoimmune hemolytic anemia caused by Anti-I, is that the hemolysis from PCH is stronger and more severe because of the DL antibodies ability to detach from lysed red blood cells and reattaching to other cells. 

Laboratory Diagnosis

There are a few different ways to pinpoint PCH in the blood bank. One is by use of a Direct Coombs test (DAT). This test provides information regarding the type of hemolysis, whether it be acquired or inherited. It also tests for antibodies that have are bound in vivo. The most common DAT result in PCH is red blood cells coated with C3d causing a positive reaction. This is sensitive in 94-99% of cases. The other way to diagnosis DLAIHA (Donath-Landsteiner Autoimmune Hemolytic Anemia) is by the indirect DL test. This process involves collection of a fresh serum specimen that is strictly maintained at 37 degrees Celsius from collection all the way through to testing. If the sample is allowed to cool or is refrigerated, there could potentially be autoadsorption of the DL anti-P antibodies onto the patients autologous red blood cells. This could cause a false negative result. Upon testing, the patients serum is mixed with P antigen positive, group O red blood cells, and fresh donor serum. The fresh donor serum is added because the complement level within the patients may be low due to consumption. The patient and donor serum mixture is incubated in a melting ice bath (O degrees Celsius) for 30 minutes, then warmed to 37 degrees Celsius for one hour. The specimen is then centrifuged and examined for hemolysis. If hemolysis is present then this constitutes a positive result for DL antibody.

Indirect-Donath-Landsteiner-test-Tube-1-OP-red-cells-suspension-patients-serum

Indirect DL test: As you can see in tubes 1 and 4, the presence of hemolysis indicates a positive test result for the DL antibody.

Treatment

There is unfortunately no cure for PCH, and very little reliable treatment options for those with the DL antibody. It is recommended to avoid cold climates as much as possible and when inside to have the temperature at 30 degrees Celsius to keep the hemoglobinuria low. This doesn’t treat the PCH, but it will minimize the recurrence and induced anemia. Steroids have been through extensive trials for treatment of PCH and there are mixed results. Theory is that steroids are better at clearing red blood cells coated with IgG, and less effective at clearing red blood cells that are coated with complement. More aggressive treatment such as splenectomy and Rituximab, which is an monoclonal antibody that targets the transmembrane protein CD20 present on B cells has been found effective for those patients with refractory PCH.

Advertisements

Overview of the Immune System; Part One

The overall function of the immune system is to prevent or limit infection. It is essential for survival. Multiple organ systems, cells, and proteins are involved in the immune response. It is the most complex system that the human body has. The immune system is differentiated into two directions. Innate or non-specific immunity or Acquired (specific) immunity.

The Innate immune system consists of many components. The skin acts as a mechanical barrier and is typically the first line of defense against foreign substances. Mucous membranes consist of the bodies normal microbiota which compete with invading microbes. The mucous membranes are also lined with mucous and cilia which act in an elevator type motion to push foreign substances away. Physiological barriers such as temperature, pH and the complement system. The more acidic environment that a lower pH offers disrupts bacterial growth. Antimicrobial proteins and peptides are present in different epithelial locations in the body. Lysozymes are present in the tears and saliva and cleave the peptidoglycan cell wall present in bacteria. Secretory phospholipase A2 is present in the gut and can enter the bacterial cell and hydrolyze lipids in the cell membrane. Lectins target gram positive bacteria and forms pores in the membranes. Defensins integrate into the lipid and form pores which causes loss of membrane integrity. These defensins are present in PMNs (neutrophils) and lamellar bodies in the gut. Cathelicidins are present in neutrophils and macrophages in the lungs and intestines and distrupt membranes. Histatins are constitutively produced by the glands in the oral cavity and are active against pathogenic fungi.  Inflammation plays a huge role in the Innate immune system. Inflammation induces vasodilation and increase in capillary permeability causing an influx of immune cells like PMNs and macrophages. Inflammation can be observed by the four cardinal signs; rumor (redness), tumor (swelling), color (heat), and dolor (pain). The innate immune response is a rapid response.

Innate Immunity

The complement system recognizes features of microbial surfaces and marks them for destruction by coating them with C3b. There are three distinct pathways; the classical pathway, the lectin pathway, and the alternative pathway. All pathways generate a C3 convertase which cleaves C3, leaving C3b bound to the microbial surface and releasing C3a. In the classical pathway the activated C1s cleaves C4 to C4a and C4b which binds to the microbial surface. C4b then binds C2, which is cleaved by C1s to C2a and C2b forming the C4b2b complex. C4b2b on the microbial surface is an active C3 convertase which cleaves C3 to C3a and C3b. This results in opsonization of the bacterial surface by C3b. The C4b2b3b complex is an active C5 convertase leading to the development of the membrane-attack complex. Each complement component (C4a/b, C2a/b, C3a/b) have different functions, but that is another discussion for another time. The lectin pathway of complement activation is when mannose-binding lectin (MBL) and ficolins recognize and bind to carbohydrates on the pathogen surface. Ficolins are similar to MBLs, but have a different carbohydrate binding domain. MBLs bind with high affinity to mannose and fucose residues. Conversely ficolins bind oligosaccharides containing acetylated sugars. When MBL binds to a pathogen surface MBL-associated serine protease (MASP)-2 is activated and cleaves C4 and C2 similar to the classical pathway. The alternative pathway is an amplification loop for C3b formation that is accelerated by properdin (factor P) in the presence of pathogens. Properdin stabilizes the C3bBb complex. C3 undergoes spontaneous hydrolysis to C3(H20) which binds to factor B, allowing it to be cleaved by factor D into Ba and Bb. The C3(H20)Bb complex is essentially a C3 convertase which cleaves more C3 into C3a and C3b. C3b molecules result in opsonization of bacterial surfaces. Its important to recognize that all pathways lead to generation of a C5 convertase. C4b2a4b in the classical pathway, C4b2a3b in the lectin pathway, and C3b2Bb in the alternative pathway. C5 is cleaved into C5a/b that initiates the assembly of the terminal complement components. These are the terminal complement components that form the membrane-attack complex.

Complement-activation-and-immune-regulation-The-complement-system-can-be-activated-by

The membrane attack complex consists of an assembly of C6, C7, and C8. This complex undergoes a conformational change that results in polymerization of C9 which generates a large pore in the cell membrane. Host cells contain CD59 which prevents the assembly of the C9 molecules preventing the formation of the membrane-attack complex.

C3a, C4a, and C5a are unique in that these complement components are called anaphylatoxics. They initiate a local inflammatory response when systemic injection of these molecules occurs. They induce smooth muscle cell contraction and increased vascular permeability. They induce adhesion molecules and activate mast cells that invade and populate submucosal tissues to release inflammatory mediators such as histamine and TNF-a.

The Acquired or adaptive immune system is all about specificity. The Humoral branch of the acquired immune system is executed by the B lymphocytes that produce antibodies to specific antigens. The cell-mediated branch consists of antigen presenting cells (APC) such as the dendritic cells processing foreign substances and presenting proteins of those substances as antigens through the major histocompatibility complex (MHC) to CD8 T lymphocytes. These are cytotoxic T-cells that kill these foreign antigens. The acquired immune response is a slow response because it takes the body time to produce antibodies. An important aspect of the adaptive response is memory. Once antibodies have been produced to an antigen, these responses last and the time it takes to produce an antibody on subsequent exposures is rapidly decreased.

These two different systems work in conjunction to produce an adequate and sustained response. When foreign antigens are processed and expressed on the surface of APCs as MHC peptides, pro-inflammatory cytokines such as IL-12p70, IL-18, and IFN-a are secreted. These attract NK cells which primarily attack viruses as well as PMNs and macrophages that phagocytize these antigen peptides to destroy them. Adaptive immunity is also started with dendritic cells that also undergo antigen uptake and processing. This is also called the maturation signal. This signal is augmented by IFN-y and TNF-a secreted by macrophages and NK cells. These dendritic cells either present the antigen to B lymphocytes which are the antibody producers or they present the antigen to CD4/CD8 T-cell lymphocytes.

There are multiple classes of antibodies. IgD is typically expressed on B-cell lymphocytes during differentiation with IgM. IgD is also present in the serum in low concentrations. IgM is a pentamer and the largest immunoglobulin. It is the first antibody that is produced in the immune response. IgA is in high concentration in the mucosal linings, saliva, and tears. Typically part of first line defenses. IgG is present in high concentrations in the serum. IgG is unique in that it can cross the placenta. IgE is involved in allergic reactions. It binds to mast cells and basophils causing degranulation.

-Caleb

Blood System Portfolio: ABO Group

The ABO blood group system was first discovered in 1901 by Karl Landsteiner. In 1902 Sturli and Von Decastello discovered the AB group. The ABH antigens do not develop until about 6 weeks of fetal life and the concentration of antigens increases until 3-4 years of age and level out. Antibodies to the ABO blood group are naturally occurring, meaning that the body will develop immunity without previous exposure to the other blood type antigens. They are high titer antibodies and will bind an activate complement in vivo. Antibodies are not able to be detected in serum until 3-6 months of age and titers decrease markedly after the age of 65.

When classifying an individuals blood type is it typically referred to by the forward and reverse groupings. For example, if someone is blood type A, they will have naturally occurring antibodies to type B. That is why it is very important when selecting blood products for a patient that every precaution is taken to match the blood types as best as possible. The ABO antibodies are clinically significant and the hemolytic reactions are immediate and hemolytic.

blood-grouping-37-638

The ABH genes that encode for the ABO blood group system encode for a glycosyl transferase enzyme that adds a specific monosaccharide to a precursor substance which results in a distinguishable antigenic structure. The B gene encodes for a-3-D-galactosyltransferase which adds the D-galactose sugar resulting in the B antigen on the RBC surface. The A gene encodes for a-3-N-acetylgalactosaminyltransferase which adds the N-acetyl-D-galactosamine sugar resulting in the A antigen. The H gene encodes for the a-2-L-fucosyltransferase which adds the L-fucose sugar resulting in the H antigen.

The ABH antigens are membrane bound glycolipids. All ABH antigens have type 2 precursors that are chains linked by a 1,4 linkage. To have an A antigen, the H antigen MUST be present. Same with the B antigen, but absence of the A and B antigens with the H antigen present is considered type “O”. The ABO genes are located on chromosome #9 and there are 4 major alleles; A1, A2, B and O. A1 is codominant with B. A2 is recessive to A1, but also codominant with B. O is recessive to all other alleles. The H gene is located on chromosome #19 and there are 2 alleles that can be expressed. H encodes for fucosyltransferase, and “h” is an amorph. Individuals that have the phenotype “hh” are considered to have the bombay phenotype and are extremely rare. These individuals will not produce the H antigen, therefore there are no A or B antigens as well. It doesn’t matter if the genes for the A and B antigens are present, without the H antigen, there can be no A or B antigen production.

ABO antibodies are primarily IgM that react at room temperature and sometimes at 37 degrees celsius. The antibodies follow Landsteiners law which states an individual possesses antibodies to ABO antigens that are absent from their own cells. As mentioned above, the forward and reverse grouping should agree. If there is a discrepancy there is further testing that can be done to distinguish the problem. Discrepancies can be found in a previous article written titled “ABO discrepancies”. One such test is called the anti-A1 lectin test. 1-8% of A2 individuals will develop anti-A1, although not clinically significant, it can cause discrepancies. Lectin is a plant seed extract that agglutinates specific human cells. It agglutinates to A1 cells, but not A2 cells. Its possible to use this test to help resolve discrepancies.

Stay tuned for the next blood group system discussed.

-Caleb