DARA-T Workup

Daratumumab (Darzalex) is an IgG1k monoclonal antibody directed against CD38, which is over expressed on the plasma cells in patients with multiple myeloma. Daratumumab binds to CD38 and causes apoptosis through antibody-dependent cellular cytotoxicity or complement-dependent cytotoxicity. In 2015 the FDA approved daratumumab for the treatment of refractory multiple myeloma. Refractory meaning that patients have received at least three previous treatment protocols that failed to show sustained efficacy or any efficacy at all. Recently in May of 2018, the FDA approved daratumumab for first line therapy in combination with bortezomid, melphalan, and prednisone. The names of the drugs aren’t important, what is important is that this monoclonal antibody approach has become more common and now has moved into first line therapy meaning that more patients are going to receive this treatment. Its no secret that patients with multiple myeloma when undergoing treatment and throughout the course of the disease progression need blood component transfusions.

Typing and screening patients that are receiving daratumumab is extremely difficult and time consuming. The daratumumab not only binds to the CD38 on the malignant lymphoma cells, but it also binds to the red cells who express CD38. This causes interference in transfusion testing. Part of normal pre-transfusion testing is an antibody screen. An antibody screen is important as it tells the transfusion team if there are any alloantibodies. Alloantibodies are antibodie directed towards red cell antigens on the donor cells. If a patient has an alloantibody, it makes selecting red cells for transfusion difficult. Additional testing must be done to select antigen negative donor cells for the antibody that the recipient or the patient has. Daratumumab causes the antibody screen and corresponding antibody panel panreactive, including a positive autocontrol. This may mask any additional clinically significant alloantibody that the patient may have.

The blood bank team must perform testing prior to the patient receiving this daratumumab. The clinical team must be in communication with the blood bank. Before the patient receives the medication, the team must get a baseline type and screen. Normally they are negative, but in the off chance that they have an alloantibody, the blood bank can identify the antibody before daratumumab interferes with testing. Other testing must include a complete phenotype of the patients cell. A complete phenotype will identify all the antigens that are present on the patients cells. This tells the blood bank and clinician vital information. If the patient does NOT have the antigen present on their red cells, there is a chance that they can produce an antibody towards that antigen on donor cells making it hard to find correct donors for transfusion. For example, if the patient is negative for the E antigen, they may or may not develop an antibody towards the E antigen, so in the event that the donor red cells have the E antigen present, the patients antibody will attack those cells and cause a transfusion reaction. For the characteristics of different transfusion reactions, reference transfusion reactions.

Once the daratumumab has been given there are techniques that must be followed to obtain a sample that is suitable for testing. An enzyme called dithiothreitol (DTT) is used to negate the binding of DARA-T to CD38 on the red cell surface. This will allow for an antibody screen to be run. Unfortunately, DTT destroys the Kell antigen on the red cell surface. Kell is a clinically significant antibody in transfusions so its important to know whether or not if the patient has the antigen or not. Patients treated with DTT, MUST have Kell negative donor units, because of the risk of developing an anti-K antibody and not being able to identify it.

 

Advertisements

Blood System Portfolio: ABO Group

The ABO blood group system was first discovered in 1901 by Karl Landsteiner. In 1902 Sturli and Von Decastello discovered the AB group. The ABH antigens do not develop until about 6 weeks of fetal life and the concentration of antigens increases until 3-4 years of age and level out. Antibodies to the ABO blood group are naturally occurring, meaning that the body will develop immunity without previous exposure to the other blood type antigens. They are high titer antibodies and will bind an activate complement in vivo. Antibodies are not able to be detected in serum until 3-6 months of age and titers decrease markedly after the age of 65.

When classifying an individuals blood type is it typically referred to by the forward and reverse groupings. For example, if someone is blood type A, they will have naturally occurring antibodies to type B. That is why it is very important when selecting blood products for a patient that every precaution is taken to match the blood types as best as possible. The ABO antibodies are clinically significant and the hemolytic reactions are immediate and hemolytic.

blood-grouping-37-638

The ABH genes that encode for the ABO blood group system encode for a glycosyl transferase enzyme that adds a specific monosaccharide to a precursor substance which results in a distinguishable antigenic structure. The B gene encodes for a-3-D-galactosyltransferase which adds the D-galactose sugar resulting in the B antigen on the RBC surface. The A gene encodes for a-3-N-acetylgalactosaminyltransferase which adds the N-acetyl-D-galactosamine sugar resulting in the A antigen. The H gene encodes for the a-2-L-fucosyltransferase which adds the L-fucose sugar resulting in the H antigen.

The ABH antigens are membrane bound glycolipids. All ABH antigens have type 2 precursors that are chains linked by a 1,4 linkage. To have an A antigen, the H antigen MUST be present. Same with the B antigen, but absence of the A and B antigens with the H antigen present is considered type “O”. The ABO genes are located on chromosome #9 and there are 4 major alleles; A1, A2, B and O. A1 is codominant with B. A2 is recessive to A1, but also codominant with B. O is recessive to all other alleles. The H gene is located on chromosome #19 and there are 2 alleles that can be expressed. H encodes for fucosyltransferase, and “h” is an amorph. Individuals that have the phenotype “hh” are considered to have the bombay phenotype and are extremely rare. These individuals will not produce the H antigen, therefore there are no A or B antigens as well. It doesn’t matter if the genes for the A and B antigens are present, without the H antigen, there can be no A or B antigen production.

ABO antibodies are primarily IgM that react at room temperature and sometimes at 37 degrees celsius. The antibodies follow Landsteiners law which states an individual possesses antibodies to ABO antigens that are absent from their own cells. As mentioned above, the forward and reverse grouping should agree. If there is a discrepancy there is further testing that can be done to distinguish the problem. Discrepancies can be found in a previous article written titled “ABO discrepancies”. One such test is called the anti-A1 lectin test. 1-8% of A2 individuals will develop anti-A1, although not clinically significant, it can cause discrepancies. Lectin is a plant seed extract that agglutinates specific human cells. It agglutinates to A1 cells, but not A2 cells. Its possible to use this test to help resolve discrepancies.

Stay tuned for the next blood group system discussed.

-Caleb