Streptococcus Identification and Work Up

Streptococcus is a genus of coccus gram positive bacteria. They typically grow in chains of pairs as cell division occurs along a single axis in this family of bacteria. Most species in the streptococcus genus are oxidase negative, catalase negative, and most are facultative anaerobes. Many streptococcal species are not intact pathogenic and are part of the commensal human microbiota of the skin, mouth, intestine and upper respiratory tract. However, certain streptococcus species are the pathogenic agent for many cases of pink eye, meningitis, bacterial pneumonia, endocarditis, erysipelas, and necrotizing fasciitis.


Species of Streptococcus are classified based on their hemolytic properties. Alpha-hemolytic species cause oxidation of the iron within the red cells, giving a greenish color to appear on the blood agar. The bacteria produces hydrogen peroxide which oxidizes the hemoglobin to biliverdin. This is also referred to as incomplete hemolysis or partial hemolysis. Beta-hemolytic streptococci cause complete degradation of the red cells, appearing as wide clear areas surrounding the bacterial colonies. Gamma-hemolytic species cause no hemolysis.

The beta-hemolytic species are further classified by the Lancefield grouping. This is a serotype classification that describes the specific carbohydrate present on the bacterial cell wall. There are serotypes for Lancefield groups A-V. For times sake, the only ones that will be discussed are Group A, and Group B.

Alpha-Hemolytic Strep

Strep pneumoniae, often referred to as pneumococcus is the leading cause of bacterial pneumonia. It can also be the etiological agent for otitis media, sinusitis, meningitis and peritonitis. The viridian’s group of alpha-hemolytic streptococci are a large group of commensal organisms. They possess no Lancefield antigens (carbohydrates) and can or can not be hemolytic.


Beta-Hemolytic Strep

Streptolysin which is an exotoxin is the enzyme produced by the strep species that causes complete hemolysis of the red cells in the media. There are two types of streptolysin; Streptolysin O (SLO) and Streptolysin S (SLS). Streptolysin O is an oxygen-sensitive (labile) cytotoxin which is secreted by most of the Group A Streptococcus (GAS) which interacts with cholesterol in the membrane of the red cells. Streptolysin S is an oxygen-stable cytotoxin also produced by GAS species that affects the innate immune system of the host. It works in preventing the host immune system from clearing the infection.


Group A Strep

Group A strep, otherwise known as S. pyogenes is the causative agent for strep infections, invasive and non-invasive. The most common infection is pharyngitis, otherwise known as strep throat, impetigo, and scarlet fever. All these infections are non-invasive. Invasive GAS infections include necrotizing fasciitis, pneumonia, and bacteremia (bacteria present in the blood). Complications can arise from GAS infections. Rheumatic fever is a disease that affects the joints, kidneys, and the heart valves. It is the consequence of an untreated strep A infection. Antibodies created by the immune system cross-react with proteins in the body which causes an immune-mediated attack on the hosts own cells. Essentially an acquired auto-immune disease. GAS is also implicated in pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections (PANDAS). Autoimmune antibodies affect the basal ganglia causing rapid onset of psychiatric, motor, sleep and other neurological symptoms, primarily in the pediatric population.

GAS is diagnosed by either an rapid strep test or by culture.

Group B Strep

GBS, otherwise known as S. agalactiae, causes pneumonia and more importantly meningitis in neonates and the elderly. The American Congress of Obstetricians and Gynecologists now recommends that all women between 35 and 37 weeks gestation to be tested for group B strep. Those who test positive should be given prophylactic antibiotics during labor. The bacteria can cause premature rupture of the membranes during pregnancy and can colonize and cross the placenta to infect the fetus.

Laboratory diagnosis and Workup

After initial culture and preliminary identification of beta-hemolytic streptococcus is suspected there are further identification tests to make an accurate diagnosis. The first is by Lancefield antigen determination. Commercially available Lancefield antisera is used for the differentiation of beta-hemolytic species. These usually come as small kits and are directed to Lancefield groups A, B, C, F, and G. Antigen detection is demonstrated by agglutination by specific antibodies that are provided.

The PYR test is a rapid colormetric method most often used to distinguish S. pyogenes from other beta-hemolytic species. The PYR tests for the presence of the enzyme pyrrolidonyl aminopeptidase. This enzyme hydrolyzes L-pyrrolidonyl-b-naphthylamide (PYR) to B-naphthylamide, which produces a red color when a specific reagent is added. The test can be performed on paper strips that contain dried chromogenic substrates for the pyrrolidonyl aminopeptidase. S. pyogenes is PYR positive and in the case of an unknown organism displaying S. pyogenes morphology plus being PYR positive, it is acceptable to presumptively identify as S. pyogenes.

Bacitracin susceptibility is another test that can be used to differentiate S. pyogenes from other beta-hemolytic strep species. S. pyogenes has an increased susceptibility to bacitracin. A pure culture must be obtained and streaked on a sheep blood agar plate. A small disk containing 0.04 U of bacitracin is placed on the plate and incubated overnight at 35 degrees celsius in 5% CO2. A zone of inhibition surrounding the disk indicates susceptibility.

With the introduction and advancement of nucleic acid detection and serological methods in the laboratory it is now getting easier and faster to detect strep species without relying on culturing and further confirmation testing. It should be important to note that this does not replace the use of a culture or any of the further testing mentioned above. Serological testing relies on antibodies to anti-streptolysin O and anti-DNase B. The antibody levels against streptolysin O rise within one week of infection and peak around 3-6 weeks. DNase B is a nuclease among many that S. pyogenes uses to escape neutrophil extracellular nets. DNase B is specific for S. pyogenes. The antibody levels to DNase B rise post two weeks infection and reach maximum titers at around 6-8 weeks.

The Optochin test is used to differentiate alpha-hemolytic streptococci. This is either S. pneumoniae or strep viridians. S. pneumoniae species are sensitive to the chemical ethylhydrocupreine hydrochloride, otherwise known as optochin. Optochin disks, sometimes called P disks can be obtained from a commercial vendor. A pure culture is obtain and incubated to allow growth overnight. When growth has occurred, a subculture is plated and a P disk is placed on the agar and incubated overnight at 35 degrees celsius with 5% CO2. The zone of inhibition is then measured and a zone greater than 14 mm indicates sensitivity and allows for the presumptive diagnosis of pneumococci.

The bile solubility test is usually used as confirmatory test for S. pneumoniae that distinguishes it from other alpha-hemolytic species. Sodium deoxycholate (Bile) will lyse the cell wall of pneumococcal species.



Blood System Portfolio: ABO Group

The ABO blood group system was first discovered in 1901 by Karl Landsteiner. In 1902 Sturli and Von Decastello discovered the AB group. The ABH antigens do not develop until about 6 weeks of fetal life and the concentration of antigens increases until 3-4 years of age and level out. Antibodies to the ABO blood group are naturally occurring, meaning that the body will develop immunity without previous exposure to the other blood type antigens. They are high titer antibodies and will bind an activate complement in vivo. Antibodies are not able to be detected in serum until 3-6 months of age and titers decrease markedly after the age of 65.

When classifying an individuals blood type is it typically referred to by the forward and reverse groupings. For example, if someone is blood type A, they will have naturally occurring antibodies to type B. That is why it is very important when selecting blood products for a patient that every precaution is taken to match the blood types as best as possible. The ABO antibodies are clinically significant and the hemolytic reactions are immediate and hemolytic.


The ABH genes that encode for the ABO blood group system encode for a glycosyl transferase enzyme that adds a specific monosaccharide to a precursor substance which results in a distinguishable antigenic structure. The B gene encodes for a-3-D-galactosyltransferase which adds the D-galactose sugar resulting in the B antigen on the RBC surface. The A gene encodes for a-3-N-acetylgalactosaminyltransferase which adds the N-acetyl-D-galactosamine sugar resulting in the A antigen. The H gene encodes for the a-2-L-fucosyltransferase which adds the L-fucose sugar resulting in the H antigen.

The ABH antigens are membrane bound glycolipids. All ABH antigens have type 2 precursors that are chains linked by a 1,4 linkage. To have an A antigen, the H antigen MUST be present. Same with the B antigen, but absence of the A and B antigens with the H antigen present is considered type “O”. The ABO genes are located on chromosome #9 and there are 4 major alleles; A1, A2, B and O. A1 is codominant with B. A2 is recessive to A1, but also codominant with B. O is recessive to all other alleles. The H gene is located on chromosome #19 and there are 2 alleles that can be expressed. H encodes for fucosyltransferase, and “h” is an amorph. Individuals that have the phenotype “hh” are considered to have the bombay phenotype and are extremely rare. These individuals will not produce the H antigen, therefore there are no A or B antigens as well. It doesn’t matter if the genes for the A and B antigens are present, without the H antigen, there can be no A or B antigen production.

ABO antibodies are primarily IgM that react at room temperature and sometimes at 37 degrees celsius. The antibodies follow Landsteiners law which states an individual possesses antibodies to ABO antigens that are absent from their own cells. As mentioned above, the forward and reverse grouping should agree. If there is a discrepancy there is further testing that can be done to distinguish the problem. Discrepancies can be found in a previous article written titled “ABO discrepancies”. One such test is called the anti-A1 lectin test. 1-8% of A2 individuals will develop anti-A1, although not clinically significant, it can cause discrepancies. Lectin is a plant seed extract that agglutinates specific human cells. It agglutinates to A1 cells, but not A2 cells. Its possible to use this test to help resolve discrepancies.

Stay tuned for the next blood group system discussed.


Cardiac Markers

Approximately every 42 seconds an American will suffer from a myocardial infarction. A MI occurs in a hypoxic state and sections of the heart are unable to get the oxygen it needs. According to the CDC about 610,000 die of heart disease in the United States every year, an occurrence of about 1 in every 4 deaths. Heart disease is the leading cause of death in both men and women.

Also about 47% of sudden cardiac deaths occur outside a hospital environment suggesting that many people with acute heart disease either don’t recognize the early signs or they don’t act on them.


There are cardiac markers that can give a physician a better picture of what is going on. These are routinely measured in a clinical laboratory and are almost all of the time STAT tests. The quick turn-around-time of these tests is imperative, because the sooner a patient with a heart condition gets treated, the better their prognosis.

The Troponin test is the most sensitive and specific test for myocardial damage. Troponin is released during and MI from the cytosolic pool of the myocytes. Its release is prolonged by the degradation of the actin and myosin filaments. Isoforms of protein, T, and I are specific markers for myocardium. After myocardial injury, troponin is released in 2-4 hours and peaks after 12 hours. It persists for up to 7 days after MI.

The Creatine Kinase-MB test is relatively specific when skeletal muscle damage is not present. Creatine kinase is an enzyme that is present in various tissues and cell types. It catalyzes the conversion of creatine to phosphocreatine utilizing adenosine triphosphate (ATP). The phosphocreatine serves as an energy reservoir in tissues that consumes ATP, especially the skeletal muscle and the brain. When mitochondrial creatine kinase is involved in the formation of phosphocreatine from mitochondrial ATP, cytosolic CK regenerates ATP from ADP and phosphocreatine kinase. In this instance, CK acts as an ATP regenerator. Clinically creatine kinase levels are assayed as a marker for damage of the CK-rich tissues in pathological states of myocardial infarction, rhabdomyolysis, muscle dystrophy, autoimmune diseases, and acute kidney injuries. There are two subunits of the cytosolic CK enzymes; Brain type (B) or Muscle type (M). The two subunits create three different isoenzymes CK-MM, CK-BB, and CK-MB. The different isoenzymes are present in different levels in various tissues. In skeletal tissue CK-MM is predominantly expressed, and in myocardial tissue, CK-MM and CK-MB is measured. Therefore measuring CK-MB levels is a good diagnostic test for heart damage from myocardial infarctions. CK-MB peaks about 10-24 hours after the attack and normalizes within 2-3 days.

Lactate dehydrogenase (LDH) was talked about in one of my previous posts and it can aid in the diagnosis of MI. Although it has been most recently replaced by the more specific and sensitive troponin test. LDH catalyzes the conversion of pyruvate to lactate. LDH-1 is found in the myocardium and LDH-2 is found in the serum. Normally LDH-2 is the predominate isoenzyme, but in cases of MI, LDH-1 is the predominate isoenzyme assayed and found. LDH takes about 72 hours to peak and normalizes within 10-14 days.

Myoglobin is an iron and oxygen binding molecule found in the muscle tissue. Myoglobin is a cytoplasmic protein that only harbors one heme group, although in contrast it has a much higher affinity for oxygen than does hemoglobin because its primary role is to store oxygen, where hemoglobins function is to transport oxygen. It contains a porphyrin ring with a proximal histidine group attached to the iron in its center. Myoglobin is only found in the bloodstream after muscle injury such as rhabdomyolysis. Myoglobin is a sensitive marker for muscle injury, making it a potential marker for MIs. However it lacks specificity and should be taken into account with other clinical findings to make a diagnosis. Myoglobin peaks the earliest of all other cardiac markers, that is within two hours, but it also falls quickly, usually before troponin or CK-MB.

Pro-brain natriuretic peptide is used as marker for acute congestive heart failure. The BNP is a hormone secreted by the cardiomyocytes in the ventricles of the heart in response to stretching caused by increased ventricular blood volume. The actions of BNP cause a decrease in systemic vascular resistance and venous pressure which causes a drop in blood pressure and causes after load. This causes a decrease in cardiac output.

Cardiac markers should be used to add to a clinical diagnosis, they should not be solely used to diagnose a patient with MI or CHF.


Renal Function Markers

Proper renal function is important in normal homeostasis as they excrete waste products and remove excess fluid through steps of excretion and reabsorption. The kidneys regulate the bodies electrolytes as well as produce hormones such as EPO that stimulates the bone marrow to produce erythrocytes. The kidneys produce a second hormone called renin from the juxtaglomerular cells located in the renal arteries. When renin is secreted it acts on angiotensinogen and converts it to angiotensin I. Angiotensin I is then converted to angiotensin II by angiotensin converting enzyme. Angiotensin II acts on blood vessels and causes vasoconstriction that raises blood pressure.

The kidneys play such an important role in normal physiology that its imperative that they are kept functioning properly. It is common to have screening tests done annually to evaluate renal function. It is not uncommon for a physician to order a renal function test to role out chronic kidney disease (CKD). There are few tests that are important and can paint a picture as to how well the kidneys are functioning. Blood urea nitrogen (BUN) provides a rough measurement of the GFR. Urea is formed in the liver as an end product to protein metabolism. It is a breakdown product from use of amino acids. In impaired renal function, the kidneys will inadequately excrete urea, which elevates blood BUN levels. Serum creatinine is another important indicator of renal health because it is solely excreted by the kidneys. Creatinine is a waste product created by muscle metabolism. Creatinine is synthesized via creatine, phosphocreatine, and adenosine triphosphate (ATP). Creatine is synthesized in the liver and is transported through blood to the other major organs where through phosphorylation is converted to phosphocreatine. Creatine becomes phosphocreatine through a catalytic reaction by creatine kinase. The by-product produced by that reaction is creatinine. Little to no tubular reabsorption of creatinine occurs so if there are elevated levels detected in the blood, it is an indicator of renal impairment. The creatinine levels in the blood and urine can be used to calculate the creatinine clearance which correlates to the GFR.

It is important to note that a creatinine concentration in urine may also be tested during a drug of abuse screen. Normal creatinine levels indicate a test sample is undiluted, therefore if there are decreased levels of creatinine it indicates a manipulated test and the test must be repeated.

The GFR describes the flow rate of filtered fluid through the glomerular capillaries into the Bowman’s capsule per unit time. Its important to note that a normal GFR level decreases with age so that must be taken into account when screening patients with suspected CKD, for example the reference range for GFR in adults age 20-29 is 116, in adults 60-69, the GFR should be around 85. A physician can also properly stage CKD based on ones GFR. A progressively decreasing GFR indicates disease progression and more aggressive treatment needs to be considered. GFR is measured typically using a patients creatinine level in accordance with there age, sex, and body size. There are multiple equations that can be used that have all been validated, but are slightly different. Certain physicians or hospitals may have standardized ways of calculating the GFR. There is the Bedside Schwartz equation which should be used for patients 18 years of age and younger. The Modification of Diet and Renal Disease (MDRD study equation and the Chronic Kidney Disease Epidemiology Collabortion (CKD-EPI) equation are the most commonly used for adults 18 and older.


Physicians may order microalbumin testing to screen individuals who are at high risk for developing CKD, especially diabetics. A urine microalbumin test detects minute levels of albumin in the urine. Albumin is one of the first proteins that be detected in the urine when renal function becomes impaired. Albumin is part of the globular protein family whose main function is to regulate the colloid osmotic pressure. Albumin also serves as a protein carrier for hydrophobic molecules such as lipid-soluble hormones, unconjugated bilirubin, free fatty acids, as well as some types of particular drugs like warfarin and phenytoin.

The kidneys are arguably one of the most important organs in homeostasis and its important that they are functioning properly. There are number of tests that can be performed to test renal function with each one giving a little piece of the puzzle. Physicians can use these tests to rule out CKD, or stage a patients disease progression.


Lactate Dehydrogenase

Lactate dehydrogenase (LD, LDH) is an enzyme that is found in all cells in all tissues of the body. It catalyzes the reversible conversion of lactate to pyruvic acid in glycolysis and gluconeogenesis. It is released from various anatomical sites of the body in response to cellular injury and damage. It is used as a common marker for tissue damage and disease such as heart failure. Its down-fall is that it isn’t very specific to which tissue is damaged, but there are subtle hints that can clue a physician in particular directions.

Lactate dehydrogenase is structurally composed of four subunits, but the two common subunits are LDHA known as LDH-M, and LDHB, known as LDH-H. The only difference between the two subunits is that their is an amino acid substitution of alanine with glutamine within the H subunit. This amino acid change slightly changes the biochemical properties of the two subunits slightly in that the H subunit can bind faster, but the catalytic activity of the M subunit does not deteriorate at the same rate as the H subunit, it holds well.


The two subunit of LDH can form five isomers which are found in various sites within the body;

LDH-1 (4H)- Found in the heart, RBCs, and the brain.

LDH-2 (3H1M)- Found in the RES.

LDH-3 (2H2M)- Found in the lungs.

LDH-4 (1H3M)- Found in the kidneys, placenta, and the pancreas.

LDH-5 (4M)- Found in the liver and striated muscle.

LDH is a protein that is found in small amounts normally in the body and there are various conditions that can cause an elevation. Cancer can raise the LDH levels within the body. Cancer cells rely on increased glycolysis due to their high energy demand. LDH elevation in cancer is often times referred to the Warburg effect which allows malignant cells to convert glucose stores into lactate even in the presence of aerobic respiration. This shifts glucose metabolism from simple energy production to accelerate cell growth and proliferation.

Hemolysis can be measured as LDH is abundant in RBCs and can be measured. Although measures should be taken to correctly receive the sample as incorrect procedures an cause hemolysis and a false-positive elevation in LDH levels among other substrates and electrolytes.

It can also be used as a marker for myocardial infarction. Normally LDH-2 is at a higher level than LDH-1. When someone experiences a myocardial infarction, levels of LDH-1 will be significantly elevated to a level higher than LDH-2. This is known as the LDH flip and is diagnostic in patients who have experienced myocardial infarction. Elevation of LDH peaks 3-4 days after MI, and can remain elevated for up to 10 days. LDH has since been replaced by the troponin test, which is a much more specific and sensitive test in diagnosing MI.

High levels of LDH in the cerebrospinal fluid (CSF) can indicate bacterial meningitis. Elevated LDH levels in viral meningitis is indicative of a poor prognosis.

LDH is an important tool that physicians don’t always utilize to its lack of specificity, but it can still be helpful in a diagnosis. Its important not to ignore any test and any result as it still contributes to the whole picture.