B-Cells and T-Cells

These specialized cells are a critical part of the bodies humoral immune system. They recognize foreign antigens or invaders and mount a quick response. B-cells act quickly by developing antibodies to the antigen epitopes. T-cells react based on what serological class they are in. If it is a CD8 T-cell, its cytotoxic and can quickly fight and phagocytize the antigen, if it is a CD4 T-cell, it works in conjunction with B-cells and other T-cell subclasses to defend the host. This article will dive into B-cells, and every subclass of T-cells and how they work together to form the humoral branch of the immune system.

B-Cells

B-cells also known as B lymphocytes are a type of lymphocyte that functions as part of the humoral component of the adaptive immune system. It’s role is to secrete antibodies, but it also functions as an antigen-presenting cell (APC) that secretes cytokines. It possesses a B-cell receptor (BCR) on its surface that allows it to bind to a specific target antigen and initiate an immune response. B-cells develop from hematopoietic stem cells (HSCs) that originate within the bone marrow. They then develop into multipotent progenitor cells (MPP), which further differentiates into the common lymphoid progenitor (CLP). Development further progresses through several stages through various gene expression patterns and arrangements. Before maturation occurs, positive selection takes place to make sure that the pre-BCR and BCR can recognize and bind to specific ligands through antigen-independent signaling. If the cells are unable to bind, these B-cells cease to develop. Negative selection occurs through binding of self-antigen with the BCR. If the BCR is able to bind self-antigen it undergoes four fates; clonal deletion, receptor editing, anergy, or ignorance. Clonal deletion is the destruction of the B-cell through programmed cell death, in other words known as apoptosis. This is only for those B-cells that have expressed receptors for self-antigens. Receptor editing is exactly what the name suggests; editing of the BCR during the maturation process in an attempt to change the specificity the receptor to not recognize self-antigens. Anergy is used to describe lack of reaction by the bodies immune system. Its a way of saying that the B-cells that express BCRs for self-antigen will simply not be used. The last fate; ignorance means that the B-cell ignores the signal and continues through natural development. When negative selection is complete, the B-cells are now in a state of central tolerance. These mature B-cells do not bind with self antigens. From the bone marrow, B-cells migrate to the spleen as transitional B-cells. Within the spleen they become Follicular B-cells or Marginal zone B-cells depending on the signal received through the BCR. Once completely differentiated, they are now called naive B-cells.

B cell

B-Cell Activation

Activation usually occurs within the secondary lymphoid organs, such as the spleen and the lymph nodes. This is where naive B-cells are positioned once mature. When these naive immunocompetent B-cells encounter an antigen through its BCR, the antigen is internalized by receptor-mediated endocytosis, digested, and positioned on MHC II molecules on the B-cell surface. This allows the B-cell to act as an antigen-presenting cell to T-cells. T-cell dependent activation requires a T-cell helper, most commonly a follicular T-helper cell, to bind to the antigen-complexed MHC II molecule on the B-cell surface through its T-cell receptor (TCR) which drives T-cell activation. These T-cells express the surface protein CD40L and secrete cytokines IL-4, and IL-21 which bind to CD40 on the B-cell surface and act as co-stimulatory factors for B-cell activation. The co-stimulatory factors promote proliferation, immunoglobulin class switching, and somatic hypermutation. Activated T-cells then provide a secondary wave of activation that cause the B-cells to proliferate and form germinal centers. During the production of these germinal centers, activated B-cells may differentiate into plasma blasts, which can produce weak IgM antibodies. Within the germinal centers, B-cells differentiate into high affinity memory B-cells or long-lived plasma cells. The primary function of plasma cells is the secretion of clone-specific antibodies. There are very few antigens that can directly provide T-cell independent B-cell activation. Some components of bacterial cell walls (lipopolysaccharide), and bacterial flagellin are some to name a few. One other mechanism through which B-cell activation is enhanced is through the activity of CD21, CD19, and CD81; all three are surface proteins that form a complex. When the BCR binds to an antigen that is tagged with the complement protein C3, CD21 binds to C3, and downstream signaling lowers the activation threshold of the cell.

Memory B-cell Activation

Activation begins through detection and binding of the target antigen. When the antigen binds, it is taken up by the B-cell through receptor-mediated endocytosis, degraded, and presented onto the MHC II molecule within the B-cell surface. The memory B-cell then acts as an antigen-presenting cell that presents the antigen:MHC II complex to T-cells. Most commonly memory follicular T-helper cells that bind through their TCR. The memory B-cell is then activated and differentiates into either plasmablasts and plasma cells or generate germinal centers.

T-Cells

A T-cell is another lymphocyte, which is a subset of white blood cells. They are called T-cells because they mature in the thymus from thymocytes. There are several subsets of T-cells, each with a specific role in the immune system. These T-cells, just like B-cells originate from hematopoietic stem cells in the bone marrow. These lymphoid progenitor cells populate the thymus and expand by cell division to immature thymocytes. The earliest thymocytes do not express either CD4+ or CD8+ and are classified as double negative cells. Through progression they become double positive and then eventually differentiate into single positive cells, either becoming CD8+, or CD4+. Its interesting to note that there is a small population of double positive T-cells within the peripheral circulation, although their function is unknown. About 98% of thymocytes undergo apoptosis during the development process by failing either positive selection or negative selection. The 2% that survive leave the thymus and become mature immunocompetent T-cells. Lets review positive and negative selection again. Positive selection selects for T-cells that are capable of interacting with MHC molecules. During positive selection signals by double positive precursors express either MHC class I or II receptors. A thymocytes fate is determined during positive selection. Double positive CD4+/CD8+ cells that interact with MHC class II molecules eventually become CD4+ cells, and on the contrary thymocytes that interact well with MHC class I molecules mature into CD8+ cells. Negative selection removes thymocytes that are capable of strongly binding with self MHC peptides.

Difference-Between-T-cells-and-B-cells-

T-Helper Cells

T-helper cells do just what their name suggests, they help other cells in immunological processes. This is evident in the activation of B-cells talked about previously. These cells are also most well known as CD4+ T-cells because the highly express CD4 glycoprotein on their surfaces. These T-cells become activated when they are presented with peptide antigens or epitopes by MHC class II molecules, usually present on antigen-presenting cells. Once activated, these cells proliferate rapidly and secrete multiple cytokines. T-helper cells differentiate into several subtypes; TH1, TH2, TH3, TH17, TH9, and THF, each secreting different cytokines to facilitate different pathways of the immune response. This is an article for another time.

TCellSubsets3-01

Cytotoxic T-Cells

These killer T-cells destroy virus-infected cells and tumor cells. These cells are known as CD8+ T-cells since they express the CD8 glycoprotein on their surface. These cells recognize targets by binding to antigen epitopes that are associated with MHC class I molecules. Cytotoxic T-cells are highly regulated by Regulatory T-cells through IL-10, adenosine, and other molecules. They can be inactivated to an anergic state, which prevents autoimmune diseases.

T-cell CD8

Memory T-Cells

These memory T-cells are long-lived and when presented with an antigen that is recognized they can quickly expand and differentiate into large numbers of effector T-cells. These memory T-cells can either be CD4+ or CD8+ T-cells. There are four subtypes of memory T-cells that will be discussed below.

Central memory T-cells express CD45RO, C-C chemokine receptor type 7 (CCR7) and L-selectin which are all surface protein markers. They have high expression of CD44, and is commonly found within the lymph nodes.

Effector memory T-cells express CD45RO, but lack expression of CCR7 and L-selectin. These T-cells also have high expression of CD44, but are not found in the lymph nodes. These T-cells are found in the peripheral circulation and tissues.

Tissue resident memory T-cells occupy tissues without recirculating. The one specific surface marker that is associated with these cells is integral aeB7.

Virtual memory T-cells differ from all other memory subsets in that they do not originate from a clonal expansion event. These cells reside at low frequencies.

Natural Killer T-cells (NK)

First off, it should be mentioned that these cells should not be confused with natural killer cells of the innate immune system. Unlike conventional T-cells that recognize antigen epitopes presented on MHC I/II molecules, NKT cells recognize glycolipid antigens presented by a molecule called CD1d. When these cells are activated, these cells perform functions from both T-helper cells and cytotoxic T-cells. These cells specialize in recognizing tumor cells and cells infected with herpes viruses.

 

Advertisements

Overview of the Immune System; Part One

The overall function of the immune system is to prevent or limit infection. It is essential for survival. Multiple organ systems, cells, and proteins are involved in the immune response. It is the most complex system that the human body has. The immune system is differentiated into two directions. Innate or non-specific immunity or Acquired (specific) immunity.

The Innate immune system consists of many components. The skin acts as a mechanical barrier and is typically the first line of defense against foreign substances. Mucous membranes consist of the bodies normal microbiota which compete with invading microbes. The mucous membranes are also lined with mucous and cilia which act in an elevator type motion to push foreign substances away. Physiological barriers such as temperature, pH and the complement system. The more acidic environment that a lower pH offers disrupts bacterial growth. Antimicrobial proteins and peptides are present in different epithelial locations in the body. Lysozymes are present in the tears and saliva and cleave the peptidoglycan cell wall present in bacteria. Secretory phospholipase A2 is present in the gut and can enter the bacterial cell and hydrolyze lipids in the cell membrane. Lectins target gram positive bacteria and forms pores in the membranes. Defensins integrate into the lipid and form pores which causes loss of membrane integrity. These defensins are present in PMNs (neutrophils) and lamellar bodies in the gut. Cathelicidins are present in neutrophils and macrophages in the lungs and intestines and distrupt membranes. Histatins are constitutively produced by the glands in the oral cavity and are active against pathogenic fungi.  Inflammation plays a huge role in the Innate immune system. Inflammation induces vasodilation and increase in capillary permeability causing an influx of immune cells like PMNs and macrophages. Inflammation can be observed by the four cardinal signs; rumor (redness), tumor (swelling), color (heat), and dolor (pain). The innate immune response is a rapid response.

Innate Immunity

The complement system recognizes features of microbial surfaces and marks them for destruction by coating them with C3b. There are three distinct pathways; the classical pathway, the lectin pathway, and the alternative pathway. All pathways generate a C3 convertase which cleaves C3, leaving C3b bound to the microbial surface and releasing C3a. In the classical pathway the activated C1s cleaves C4 to C4a and C4b which binds to the microbial surface. C4b then binds C2, which is cleaved by C1s to C2a and C2b forming the C4b2b complex. C4b2b on the microbial surface is an active C3 convertase which cleaves C3 to C3a and C3b. This results in opsonization of the bacterial surface by C3b. The C4b2b3b complex is an active C5 convertase leading to the development of the membrane-attack complex. Each complement component (C4a/b, C2a/b, C3a/b) have different functions, but that is another discussion for another time. The lectin pathway of complement activation is when mannose-binding lectin (MBL) and ficolins recognize and bind to carbohydrates on the pathogen surface. Ficolins are similar to MBLs, but have a different carbohydrate binding domain. MBLs bind with high affinity to mannose and fucose residues. Conversely ficolins bind oligosaccharides containing acetylated sugars. When MBL binds to a pathogen surface MBL-associated serine protease (MASP)-2 is activated and cleaves C4 and C2 similar to the classical pathway. The alternative pathway is an amplification loop for C3b formation that is accelerated by properdin (factor P) in the presence of pathogens. Properdin stabilizes the C3bBb complex. C3 undergoes spontaneous hydrolysis to C3(H20) which binds to factor B, allowing it to be cleaved by factor D into Ba and Bb. The C3(H20)Bb complex is essentially a C3 convertase which cleaves more C3 into C3a and C3b. C3b molecules result in opsonization of bacterial surfaces. Its important to recognize that all pathways lead to generation of a C5 convertase. C4b2a4b in the classical pathway, C4b2a3b in the lectin pathway, and C3b2Bb in the alternative pathway. C5 is cleaved into C5a/b that initiates the assembly of the terminal complement components. These are the terminal complement components that form the membrane-attack complex.

Complement-activation-and-immune-regulation-The-complement-system-can-be-activated-by

The membrane attack complex consists of an assembly of C6, C7, and C8. This complex undergoes a conformational change that results in polymerization of C9 which generates a large pore in the cell membrane. Host cells contain CD59 which prevents the assembly of the C9 molecules preventing the formation of the membrane-attack complex.

C3a, C4a, and C5a are unique in that these complement components are called anaphylatoxics. They initiate a local inflammatory response when systemic injection of these molecules occurs. They induce smooth muscle cell contraction and increased vascular permeability. They induce adhesion molecules and activate mast cells that invade and populate submucosal tissues to release inflammatory mediators such as histamine and TNF-a.

The Acquired or adaptive immune system is all about specificity. The Humoral branch of the acquired immune system is executed by the B lymphocytes that produce antibodies to specific antigens. The cell-mediated branch consists of antigen presenting cells (APC) such as the dendritic cells processing foreign substances and presenting proteins of those substances as antigens through the major histocompatibility complex (MHC) to CD8 T lymphocytes. These are cytotoxic T-cells that kill these foreign antigens. The acquired immune response is a slow response because it takes the body time to produce antibodies. An important aspect of the adaptive response is memory. Once antibodies have been produced to an antigen, these responses last and the time it takes to produce an antibody on subsequent exposures is rapidly decreased.

These two different systems work in conjunction to produce an adequate and sustained response. When foreign antigens are processed and expressed on the surface of APCs as MHC peptides, pro-inflammatory cytokines such as IL-12p70, IL-18, and IFN-a are secreted. These attract NK cells which primarily attack viruses as well as PMNs and macrophages that phagocytize these antigen peptides to destroy them. Adaptive immunity is also started with dendritic cells that also undergo antigen uptake and processing. This is also called the maturation signal. This signal is augmented by IFN-y and TNF-a secreted by macrophages and NK cells. These dendritic cells either present the antigen to B lymphocytes which are the antibody producers or they present the antigen to CD4/CD8 T-cell lymphocytes.

There are multiple classes of antibodies. IgD is typically expressed on B-cell lymphocytes during differentiation with IgM. IgD is also present in the serum in low concentrations. IgM is a pentamer and the largest immunoglobulin. It is the first antibody that is produced in the immune response. IgA is in high concentration in the mucosal linings, saliva, and tears. Typically part of first line defenses. IgG is present in high concentrations in the serum. IgG is unique in that it can cross the placenta. IgE is involved in allergic reactions. It binds to mast cells and basophils causing degranulation.

-Caleb